• Version Francaise
  • Products
      3D-MICRO-PRINTING - Two-photon Polymerization

      Microlight Altraspin 3D micro-printer
      µFAB-3D
      Microlight Altraspin 3D micro-printer
      Altraspin


      2D-MICRO-PRINTING - Maskless lithography

      Microlight Altraspin 3D micro-printer
      SmartPrint UV
  • Applications
  • Technology
      Microlight Altraspin 3D micro-printer
      Two-photon polymerization
      Microlight Altraspin 3D micro-printer
      Maskless lithography
  • Company
  • Contact

TPP Technology
Printing resolution
Scientific publications
Votre navigateur ne supporte pas la balise vidéo.


The Microlight 3D machines use the two-photon polymerization technology (TPP) to create their 3D structures.

Two photon Polymerization Based on the non-linear two-photon absorption phenomenon, our technology creates a solid 3D-printed structure from a photoactivable material.

Two photons can be absorbed simultaneously by the photo-activated-monomer in the very small volume called "voxel" at the focal point of our pulsed-laser (image above). A chemical reaction starts, and the liquid monomer becomes a solid polymer inside the voxel.

With the right combination of optical elements and monomer-material, the voxel diameter may be as small as 0.1 µm ! That is why our technology is perfectly adapted for ultra-high resolution 3D printing. micro-printed needles

Led by our proprietary software, the Microlight machine moves its laser voxel inside the material to create a solid structure.
The laser can even go through polymerized parts, so the voxel is moved freely in three dimensions inside the monomer, therefore any shape can be 3D-printed with our technology !
A wide range of materials can be used, such as photo-polymer, bio-compatible materials, and even proteins and other biomaterials.

You may discover some research works done using our 3D-micro-printing technology in the scientific publications listed below.




Our Unique Technology

The two-photon polymerization (2PP) technology used in Microlight3D micro-manufacturing machines is the result of 15 years of fundamental research at the University of Grenoble Alpes (UGA), the first scientific publications dating from 2002. The researchers have demonstrated that the control of laser-pulses in the sub-nanosecond regime, together with a careful mastering of the non-linear laser-polymer interaction, can create ultra narrow and reproducible voxels, which is the base for high-resolution and high-smoothness 3D printing. Furthermore, they have demonstrated that the voxel could be positioned, and moved freely, anywhere in the volume of the resin, slashing away the layer-by-layer approach of the classical Additive Manufacturing technologies, and opening the way to true generative-printing.

These innovations allow Microlight3D to bring 3D printers to the market with unique characteristics, in terms of highest printing-resolution, compactness, and flexibility of use.
It also provides better reliability because these industrial lasers last a very long time with no need for yearly maintenance.


Microlight 3D micro-printer
Want to go further ?
See our machines








Print with a resolution down to <0.2 microns !
Blood capillaries 3D printing Printing resolution is given by the material, the wavelength of the laser and the objective used for the fabrication.
Two photon polymerization resolution
Our 532 nm wavelength ensures therefore a ultra-high 3D-printing resolution below 0.2 microns, using a 1.25 numerical aperture immersion objective.

Nota bene : the laser pulse duration has no visible impact on the resolution.

threshold lines Our 3D-micro-printing systems are provided with a standard minimal resolution of 0.2 µm.

However, some of our customers have achieved a resolution down to 67 nanometers !

courtesy of T.T. Chung et al., National Taiwan University










Scientific publications

The Microlight 3D technology was used for the following publications :

Fabrication and Magnetic Actuation of 3D-Microprinted Multifunctional Hybrid Microstructures
Victor Vieille, Roxane Pétrot, Olivier Stéphan, Guillaume Delattre, Florence Marchi, Marc Verdier, Orphée Cugat, Thibaut Devillers
Adv. Mater. Technol. 2020, 5, 2000535. https://doi.org/10.1002/admt.202000535

Microheater Actuators as a Versatile Platform for Strain Engineering in 2D Materials
Yu Kyoung Ryu, Felix Carrascoso, Rubén López-Nebreda, Nicolás Agraït, Riccardo Frisenda, and Andres Castellanos-Gomez
Nano Lett. 2020, 20, 7, 5339–5345 https://doi.org/10.1021/acs.nanolett.0c01706

MEMS FABRICATION USING 2PP TECHNIQUE BASED 3D PRINTER
İshak ERTUGRUL, Nihat AKKUŞ, Ebuzer AYGÜL, Senai YALCİNKAYA
Int. J. of 3D Printing Tech. Dig. Ind., 4(1): 12-17, (2020).

Fabrication of a Multiple Heater-Sensor Platform for Cell Temperature Monitoring
A. Garraud, S. Basrour and D. Peyrade
2020 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), Lyon, France, 2020, pp. 1-4, doi: 10.1109/DTIP51112.2020.9139132.

Microfabrication by two-photon lithography, and characterization, of SiO2/TiO2 based hybrid and ceramic microstructures
Desponds, A., Banyasz, A., Montagnac, G. et al.
J Sol-Gel Sci Technol 95, 733–745 (2020). https://doi.org/10.1007/s10971-020-05355-3

Enhancing the Performance of Fuel Cell Gas Diffusion Layers Using Ordered Microstructural Design
Daniel Niblett, Vahid Niasar and Stuart Holmes
doi: 10.1149/2.0202001JES - J. Electrochem. Soc. 2020 volume 167, issue 1, 013520

Multi-directional bubble generated streaming flows
Tamsin A. Spelman, Olivier Stephan, Philippe Marmottant
Ultrasonics 2019, 106054, ISSN 0041-624X

Microtopographies control the development of basal protrusions in epithelial sheets
Sylvie Coscoy, Sarah Baiz, Jean Octon, Benoît Rhoné, Lucie Perquis, Qingzong Tseng, François Amblard, and Vincent Semetey
Biointerphases 2018 13:4

Two-photon controlled sol–gel condensation for the microfabrication of silica based microstructures. The role of photoacids and photobases
J.Kustra, E.Martin, D.Chateau, F.Lerouge, C.Monnereau, C.Andraud, M.Sitarz, P.L.Baldeck and S. Parola 
RSC Adv., 2017,7, 46615-46620 - DOI: 10.1039/C7RA08608C

Rapid Prototyping of Polymeric Nanopillars by 3D Direct Laser Writing for Controlling Cell Behavior
Nina Buch-Månson, Arnaud Spangenberg, Laura Piedad Chia Gomez, Jean-Pierre Malval, Olivier Soppera & Karen L. Martinez
Scientific Reports 7, Article number: 9247 (2017)
doi:10.1038/s41598-017-09208-y


Bubble-based acoustic micropropulsors: active surfaces and mixers
N. Bertin, T. A. Spelman, T. Combriat, H. Hue, O. Stéphan, E. Lauga and P. Marmottant,
Lab Chip, 2017, Advance Article , DOI: 10.1039/C7LC00240H

Rapid Prototyping of Chemical Microsensors Based on Molecularly Imprinted Polymers Synthesized by Two-Photon Stereolithography
L.P.Chia Gomez, A. Spangenberg, X-A Ton, Y.Fuchs, F. Bokeloh, J-P Malval, B. Tse Sum Bui, D. Thuau, Cédric Ayela, K. Haupt, and O.Soppera
Adv. Mater. 2016, 28, 5931–5937 - DOI: 10.1002/adma.201600218

Propulsion of bubble-based acoustic microswimmers.  
  N.  Bertin,  Tamsin  A.  Spelman,  O.  stephan,  L.  Gredy,  M.  Bouriau,  E.  Lauga  and  P.  Marmottant
  Phys.  Rev.  Appl.  4  (2015)  064012.  

  High-speed  3D  laser  printing  by  two-photon  induced  chemistry:  breaking  the  centimeter-scale  limit.  
  P.  Baldeck,  B.  Chichkov  ,  M.  Farsari,  P.  Romero,  O.  Nerea,  O.  Stephan,  K.  Heggarty  
  Photonics  West  OPTO  2015  SPIE,  (2015),  vol.  9360-­‐34.    

 Recent  advances  in  two-photon  3D  laser  lithography  with  self-Q-switched  Nd:YAG   microchip  lasers.  
  P.L.  Baldeck,  P.  Prabhakaran,  C.-­‐Y.  Liu,  M.  Bouriau,  L.  Gredy,  O.  Stephan,  T.  Vergote,  H.   Chaumeil,  J.-P.  Malval,  Y.-H.  Lee,  C.-L.  Lin,  C.-T.  Lin,  Y.  Hsun  Hsueh,  T.-T.  Chung
  Proc.  SPIE  (2013)  8827:6.  

   Nonlinear  Photochemistry  and  3D  Microfabrication  with  Q-Switched  Nd:YAG  Microchip   Lasers.  
  P.L.  Baldeck,  T.  Scheul,  M.  Bouriau,  O.  Stephan,  J.-P.  Malval,  C.-L.  Lin,  C.-T.  Lin,  C.-L.  Tseng,  C.   Huang,  T.-T.  Chung  
  Proc.  SPIE  (2013)  Vol.  8113  811309-­‐3.  

   Laser  microstructuration  of  three-dimensional  enzyme  reactors  in  microfluidic  channels
  Monica  Iosin,  Teodora  Scheul,  Clément  Nizak,  Olivier  Stephan,  Simion  Astilean,  Patrice   Baldeck
  Microfluid  Nanofluid  (2011)  10:685–690  

 Microstructuration  of  protein  matrices  by  laser-induced  photochemistry
  M. Iosin,  O. Stephan,  S. Astilean,  A. Dupperay,  P.L. Baldeck
Journal of optoelectronics and advanced materials,  Vol.  9,  No.  3,  March  2007,  p.   716  –  720  

Three-dimensional microfabrication by two-photon-initiated polymerization with a low-cost microlaser.
Irène Wang, Michel Bouriau, Patrice L. Baldeck, Cécile Martineau, Chantal Andraud.
Optics Letters, Optical Society of America, 2002, 27 (15), pp.1348-1350. 〈10.1364/OL.27.001348〉


  • Microlight3D ©2020
  • -
  • Tel. (+33)4.76.54.95.16
  • -
  • contact@microlight.fr
  • -
  • Contact
  • -
  • Privacy policy